If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+135t=0
a = -16; b = 135; c = 0;
Δ = b2-4ac
Δ = 1352-4·(-16)·0
Δ = 18225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{18225}=135$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(135)-135}{2*-16}=\frac{-270}{-32} =8+7/16 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(135)+135}{2*-16}=\frac{0}{-32} =0 $
| 3=1x+14 | | (1/4+1/3)r=1/2(r-52) | | 1/6(x-5)=1/2(x=+6) | | 12x-25=7x | | -2a+2.6=2.266-1.8a | | 7x+6)=1 | | 3(4-3x)+2x=17x | | y=1/4(1)+1 | | (9-x)(27-x)=(15-x)(15-x) | | -2a+2.6=2.26-1.8a | | 2-4y=0 | | 17x=-47=259 | | 1+3.1a-6.1a=0.5 | | -4(x+6)=2(x-3) | | 15p+5.50=196.50 | | 6p+10=70 | | 6p+10=7 | | 4(2x+3)=17x-8 | | Y=3x+1400 | | 3^(3x-1)=4 | | 4z+16+z^2=0 | | 3^3x-1=4 | | 15+5.50p=196.50 | | 1.5x-2=2x-7 | | -2a+2.6=2.2666-1.8a | | 25(3b+2)=-25 | | (x-2)^2=100 | | (7/x+3)+(5/3x-1)=13/x+3 | | 60*x=208.5 | | 4=3(x-1)-7x+15 | | −4x+12=-4 | | 12x+4×-8=2×-22 |